Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Size: px
Start display at page:

Download "Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009"

Transcription

1 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides from: C. Rush, JB. Poline image data parameter estimates Statistical Parametric Map corrected p-values Mass univariate approach K p K realignment & motion correction normalisation General Linear Linear Model Model model model fitting fitting statistic statistic image image smoothing correction for for multiple comparisons Random effect effectanalysis N Y = N X p K βˆ anatomical reference kernel design matrix Dynamic causal causal modelling, Functional & effective connectivity, PPI, PPI, Y = Xβ + ε + N εˆ

2 raw fmri time series scaled for global changes fitted high-pass filter GLM fitted adjusted for global & low Hz effects fitted box-car residuals t-statistic - Computations Y = Xβ + ε ˆβ : least squares estimates c c = = X T c ˆ β t = T Std ˆ ( c ˆ) β T Std ˆ ( c ˆ) β = 2 ˆ σ = df 2 ( y X ˆ β ) compute df df using using Satterthwaite approximation ˆ 2 σ c T X VX T V c ReML ReML BOLD Impulse Response Advantages of Event-related fmri Function of blood oxygenation, flow, volume (Buxton et al, 1998) Peak (max. oxygenation) 4-6s poststimulus; baseline after 20-30s Initial undershoot can be observed (Malonek & Grinvald, 1996) Similar across V1, A1, S1 but differences across: other regions (Schacter et al 1997) individuals (Aguirre et al, 1998) Brief Stimulus Peak Undershoot 1. Randomised trial order c.f. confounds of blocked designs 2. Post hoc / subjective classification of trials e.g, according to subsequent memory 3. Some events can only be indicated by subject (in (in time) e.g,, spontaneous perceptual changes 4. Some trials cannot be blocked e.g, oddball designs 5. More accurate models even for blocked designs? e.g, state-item interactions

3 BOLD Response Latency (Linear) Contents Delayed Responses (green/ yellow) Canonical Basis Functions Canonical Derivative Parameter Estimates ß 1 ß 2 ß 1 ß 2 ß 1 ß 2 Introduction & recap Experimental design «Take home» message Actual latency, dt, vs. ß 2 / ß 1 ß 2 /ß 1 Face repetition reduces latency as well as magnitude of fusiform response Experimental design Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear - Polynomial expansions, neurometric functions Factorial designs Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions Subtraction Logic Cognitive subtraction originated with reaction time experiments (F. C. Donders, a Dutch physiologist). Measure the time for a process to occur by comparing two reaction times, one which has the same components as the other + the process of interest. Example: T1: Hit a button when you see a light T2: Hit a button when the light is green but not red T3: Hit the left button when the light is green and the right button when the light is red T2 T1 = time to make discrimination between light color T3 T2 = time to make a decision Franciscus Cornelis Donders ( ) Assumption of pure insertion: You can insert a component process into a task without disrupting the other components. Widely criticized (we ll come back to this when we talk about parametric studies)

4 Activation and Baseline Conditions Aim: To reveal brain activation related to a cognitive or sensori-motor process of interest (PI) Cognitive Subtraction: Contrast Activation task (engages PI) to a Baseline task (no PI). Difference = Brain regions associated with PI. Example: PI = Object recognition Activation task: with PI Baseline task: no PI Cognitive Subtractions: Stimulus or task changes Stimulus Change Activation condition Task: (constant) View picture Stimulus (constant) Activation condition _ Baseline condition _ View picture = Baseline condition Object Recognition = Name Retrieval Difference = Brain regions associated with Object Recognition Task: Change: Name Object Say: Yes Distant stimuli Cognitive Subtraction: Baseline-problems - Several components differ! Cognitive Subtractions: Serial subtraction Baseline condition for one contrast acts as activation condition for another contrast Related stimuli Example: Condition A. Condition B. Condition C. - P implicit in control task? Stimulus: - - Queen! Aunt Jenny? Same stimuli,, different task - Interaction of process and task? Name Person! Name Gender! Task: Name Object A-B = Name Retrieval B-C = Object Recognition Say: Yes Say: Yes Very limited

5 Problems with Serial Subtractions Stimulus: Condition A Condition B Condition C Task: Say: Name of Say: Yes Say: Yes Object Assumptions: A - B = only changes processing associated with Name Retrieval B - C = only changes processing associated with Object Recognition BUT 1. There may be implicit naming in condition B. In which case: naming component is removed from A-B and introduced into B-C. 2. Name Retrieval may increase the demands on object recognition (Interactions). i.e A - B : May reveal Object recognition NOT Name retrieval. B - C : May reveal Object Recognition AND Name Retrieval Implicit processing and interactions between processing components make it difficult to find baseline tasks that control for all but the process of interest. SPM{F} testing for evoked responses BOLD EPI fmri at 2T, TR 3.2sec. Words presented every 16 secs; ; (i) studied words or (ii) new words Evoked responses Differential event-related fmri Parahippocampal responses to words Baseline here corresponds to session mean (and thus processing during rest ) Null events or long SOAs essential for estimation Cognitive interpretation hardly possible, but useful to define regions generally involved in the task SPM{F} testing for evoked responses Differential responses Differential event-related fmri Parahippocampal responses to words Experimental design Word generation G Word repetition R A categorical analysis R G R G R G R G R G R G SPM{F} testing for differences BOLD EPI fmri at 2T, TR 3.2sec. Words presented every 16 secs; ; (i) studied words or (ii) new words studied words new words Peri-stimulus time {secs} G - R = Intrinsic word generation under assumption of pure insertion

6 Overview Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear - Polynomial expansions, neurometric functions Factorial designs Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions Conjunctions One way to minimise the baseline/pure insertion problem is to isolate the same process by two or more separate comparisons, and inspect the resulting simple effects for commonalities A test for such activation common to several independent contrasts ts is called Conjunction Conjunctions can be conducted across a whole variety of different contexts: tasks stimuli senses (vision, audition) etc. But the contrasts entering a conjunction have to be truly independent! Conjoint effects from multiple contrasts. A. Name Object B. View Nonobject Contrast 1 Contrast 2 Contrast 3 CONJUNCTION DESIGNS _ A - B = Name retrieval confounded with object recognition C. Name Colour D. View Nonobject C - D = Name retrieval _ confounded with colour processing E. Name Word BUS _ F. View XXXs XXX E - F = Name retrieval confounded with word recognition. Name Retrieval = Areas activated by Conjunction of A-B and C-D and E-F Example: Which neural structures support object recognition, independent of task (naming vs viewing)? Visual Processing V Object Recognition R Phonological Retrieval P [ R,V - V ] & [ P,R,V - P,V ] = R & R = R (assuming no interaction RxP; ; see later) Conjunctions Stimuli (A/B) Objects Colours Task (1/2) Viewing A1 B1 Naming (Object - Colour viewing) & (Object - Colour naming) Common object recognition [ ] & [ ] Price et al, 1997 response (R) A2 B2

7 Conjunctions Two flavours of inference about conjunctions SPM5/8 offers two general ways to test the significance of conjunctions: Test of global null hypothesis: Significant set of consistent effects which voxels show effects of similar direction (but not necessarily individual significance) across contrasts? Test of conjunction null hypothesis: Set of consistently significant effects which voxels show, for each specified contrast, effects > threshold? Choice of test depends on hypothesis and congruence of contrasts; the global null test is more sensitive (i.e., when direction of effects hypothesised) B1-B2 + p(a1=a2)<p + A1-A2 p(b1=b2)<p Friston et al. (2005). Neuroimage, 25: Nichols et al. (2005). Neuroimage, 25: Overview Parametric Designs: General Approach Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear - Polynomial expansions, neurometric functions Factorial designs Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions Parametric designs approach the baseline problem by: Varying the stimulus-parameter of of interest on a continuum, in in multiple (n>2) steps and relating blood-flow to to this parameter Possible tests for such relations are manifold: Linear Nonlinear: Quadratic/cubic/etc. Data-driven (e.g., neurometric functions)

8 A linear parametric contrast A nonlinear parametric contrast Linear effect of time The nonlinear effect of time assessed with the SPM{T} Nonlinear parametric design matrix versus Parametric Designs: Neurometric functions Coding of tactile stimuli in Anterior Cingulate Cortex: Stimulus (a) presence,, (b) intensity,, and (c) pain intensity Variation of of intensity of a heat stimulus applied to the right hand (300, 400, 500, and 600 mj) Assumptions: Rees,, G., et al. (1997). Neuroimage, 6: 6 : Rees,, G., et al. (1997). Neuroimage, 6: 6 : Inverted U response to increasing word presentation rate in the DLPFC Büchel et al. (2002). The Journal of Neuroscience,, 22: : 970-6

9 Parametric Designs: Neurometric functions Nonlinear parametric design matrix Stimulus intensity E.g,, F-contrast F [0 1 0] on Quadratic Parameter => Inverted U response to increasing word presentation rate in the DLPFC SPM{F} Linear Quadratic Stimulus presence Polynomial expansion: f(x) ) ~ b 1 x + b 2 x up to (N-1)th order for N levels Pain intensity Büchel et al. (2002). The Journal of Neuroscience,, 22: : (SPM8 GUI offers polynomial expansion as option during creation of parametric modulation regressors) Correlation design Overview No need to find baseline that controls for all but the process of interest Segregates areas showing differential effects (linear and nonlinear effects) But: Common effects can not be revealed without a baseline. Limited to continuous variables (e.g. duration, frequency, word length, R.T.s etc) Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear - Polynomial expansions, neurometric functions Factorial designs Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions

10 Stimuli (A/B) Objects Colours Factorial designs: : Main effects and Interactions Task (1/2) Main effect of task: Viewing Naming (A1 + B1) (A2 + B2) Main effect of stimuli: (A1 + A2) (B1 + B2) Interaction of task and stimuli: Can show a failure of pure insertion (A1 B1) (A2 B2) interaction effect (Stimuli x Task) Colours Objects Colours Viewing Naming Objects A1 B1 A2 B2 dissociate interactions B2 B1 = Object Recognition during naming Factorial Designs Naming Object No Object Recognition Recognition A. Name (Object) B. Name (Colour) A2 A1 = C. View D. View Object Recognition during viewing No Naming The Interaction effect (B2-B1) B1) - (A2-A1) A1) i.e. The effect of Naming on Object recognition (B2-A2) - (B1-A1) i.e. The effect of object recognition on Naming. Conjunction of B2-B1 and A2-A1 reveals areas involved in object recognition irrespective of naming. Conjunction of B2-A2and B1-A1 reveals areas involved in naming irrespective of object recognition. Overview Linear Parametric Interaction Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses A (Linear) Time-by-Condition Interaction ( Generation strategy?) Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear - Polynomial expansions, neurometric functions Factorial designs Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions Contrast: [ ] [-1 1 1] = [-5[ ]

11 Nonlinear Parametric Interaction Model selection F-contrast tests for nonlinear Generation-by-Time by-time interaction (including both linear and Quadratic components) Factorial Design with 2 factors: 1. Gen/Rep (Categorical, 2 levels) 2. Time (Parametric, 6 levels) Time effects modelled with both linear and quadratic components G-R Time Lin Time Quad G x T G x T Lin Quad Model must fit i.e. i.e. model assumptions met met at every voxel Omitting relevant effects effects contribute to variance residuals not iid.. Normal model not valid outcomes? variance (usually, but but can can ) ) increased residual d.f. invalid inference Including irrelevant effects waste degrees of freedom conservative tests but safest! A real example (almost!)!) Asking ourselves some questions... Experimental Design Design Matrix Factorial design with 2 factors : modality and category 2 levels for modality (eg. Visual/Auditory) 3 levels for category (eg. 3 categories of words) V A C1 C2 C3 C1 C2 C3 V A C 1 C 2 C 3 V A C 1 C 2 C 3 Test C1 > C2 : c = [ ] Test V > A : c = [ ] [ ] Test C1,C2,C3? (F) c = [ ] [ ] Test the interaction MxC? Design Matrix not orthogonal Many contrasts are non estimable Interactions MxC are not modelled

12 Modelling the interactions Asking ourselves some questions... C 1 C 1 C 2 C 2 C 3 C 3 Test C1 > C2 : c = [ ] V A V A V A Test V > A : c = [ ] Test the category effect : [ ] c = [ ] [ ] Test the interaction MxC : [ ] c = [ ] [ ] Design Matrix orthogonal All contrasts are estimable Interactions MxC modelled If no interaction...? Model is too big! Asking ourselves some questions... With a more flexible model Convolution model Design and contrast SPM(t) or SPM(F) Fitted and adjusted data C 1 C 1 C 2 C 2 C 3 C 3 V A V A V A Test C1 > C2? Test C1 different from C2? from c = [ ] to c = [ ] [ ] becomes an F test! Test V > A? c = [ ] is possible, but is OK only if the regressors coding for the delay are all equal

13 Toy example: take home... Contents F tests have to be used when - Testing for >0 and <0 effects - Testing for more than 2 levels - Conditions are modelled with more than one regressor F tests can be viewed as testing for - the additional variance explained by a larger model wrt a simpler model, or - the sum of the squares of one or several combinations of the betas (here the F test b1 b2 is the same as b2 b1, but two tailed compared to a t-test). t test). Introduction & recap Experimental design «Take home» message Conclusions General Linear Model (simple) standard statistical technique temporal autocorrelation a Generalised Linear Model single general framework for many statistical analyses flexible modelling basis functions design matrix visually characterizes model fit data with combinations of columns of design matrix statistical inference: contrasts t tests: tests: planned comparisons of the parameters F tests: general linear hypotheses, model comparison Way to proceed Prepare your questions. ALL the questions! Find a model which allows contrasts that translates these questions. takes into account ALL the effects (interaction, sessions,etc) Devise task & stimulus presentation. Acquire the data & analyse. Not the other way round!!!

14 Three Stages of an Experiment 1. Sledgehammer Approach brute force experiment : powerful stimulus & don t try to control for everything look at was done before or by others run a couple of subjects -- see if it looks promising if it doesn t look great, tweak the stimulus or task try to be a subject yourself so you can notice any problems with stimuli or subject strategies Three Stages of an Experiment 1. Sledgehammer Approach 2. Real Experiment at some point, you have to stop changing things and collect enough subjects run with the same conditions to publish it how many subjects do you need some psychophysical studies test two or three subjects, many studies test 6-10 subjects, random effects analysis requires at least 15 subjects,... some subjects WILL be rejected, so acquire more than the minimum! can run all subjects in one or two days pro: minimize setup and variability con: bad magnet day means a lot of wasted time make sure all the data are treated the same way. (script) Three Stages of an Experiment 1. Sledgehammer Approach 2. Real Experiment 3. Whipped Cream experiment after the real experiment works, then think about a whipped cream version going straight to whipped cream is a huge endeavor, especially if you re new to imaging and it gives you a second paper!

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs Experimental Design Overview Rik Henson With thanks to: Karl Friston, Andrew Holmes 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs designs designs - and nonlinear interactions

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs Event-related fmri Rik Henson With thanks to: Karl Friston, Oliver Josephs Overview 1. BOLD impulse response 2. General Linear Model 3. Temporal Basis Functions 4. Timing Issues 5. Design Optimisation

More information

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

1st level analysis Basis functions, parametric modulation and correlated regressors

1st level analysis Basis functions, parametric modulation and correlated regressors 1st level analysis Basis functions, parametric modulation and correlated regressors 1 First Level Analysis Bold impulse response Temporal Basis Functions Parametric modulation Correlated regressors Blocked

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Contrasts and Classical Inference

Contrasts and Classical Inference Elsevier UK Chapter: Ch9-P3756 8-7-6 7:p.m. Page:6 Trim:7.5in 9.5in C H A P T E R 9 Contrasts and Classical Inference J. Poline, F. Kherif, C. Pallier and W. Penny INTRODUCTION The general linear model

More information

Mixed effects and Group Modeling for fmri data

Mixed effects and Group Modeling for fmri data Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19, 2010 1 Outline Mixed effects

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Keppel, G. & Wickens, T. D. Design and Analysis Chapter 4: Analytical Comparisons Among Treatment Means

Keppel, G. & Wickens, T. D. Design and Analysis Chapter 4: Analytical Comparisons Among Treatment Means Keppel, G. & Wickens, T. D. Design and Analysis Chapter 4: Analytical Comparisons Among Treatment Means 4.1 The Need for Analytical Comparisons...the between-groups sum of squares averages the differences

More information

ROI analysis of pharmafmri data: an adaptive approach for global testing

ROI analysis of pharmafmri data: an adaptive approach for global testing ROI analysis of pharmafmri data: an adaptive approach for global testing Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Abstract Pharmacological fmri (pharmafmri) is a new highly

More information

Optimization of Designs for fmri

Optimization of Designs for fmri Optimization of Designs for fmri UCLA Advanced Neuroimaging Summer School August 2, 2007 Thomas Liu, Ph.D. UCSD Center for Functional MRI Why optimize? Scans are expensive. Subjects can be difficult to

More information

Detecting fmri activation allowing for unknown latency of the hemodynamic response

Detecting fmri activation allowing for unknown latency of the hemodynamic response Detecting fmri activation allowing for unknown latency of the hemodynamic response K.J. Worsley McGill University J.E. Taylor Stanford University January 7, 006 Abstract Several authors have suggested

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a )

The ASL signal. Parenchy mal signal. Venous signal. Arterial signal. Input Function (Label) Dispersion: (t e -kt ) Relaxation: (e -t/t1a ) Lecture Goals Other non-bold techniques (T2 weighted, Mn contrast agents, SSFP, Dynamic Diffusion, ASL) Understand Basic Principles in Spin labeling : spin inversion, flow vs. perfusion ASL variations

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

Group comparison test for independent samples

Group comparison test for independent samples Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences between means. Supposing that: samples come from normal populations

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity

Supplementary Information. Brain networks involved in tactile speed classification of moving dot patterns: the. effects of speed and dot periodicity Supplementary Information Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity Jiajia Yang, Ryo Kitada *, Takanori Kochiyama, Yinghua

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Peak Detection for Images

Peak Detection for Images Peak Detection for Images Armin Schwartzman Division of Biostatistics, UC San Diego June 016 Overview How can we improve detection power? Use a less conservative error criterion Take advantage of prior

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

Lecture 6: Linear Regression

Lecture 6: Linear Regression Lecture 6: Linear Regression Reading: Sections 3.1-3 STATS 202: Data mining and analysis Jonathan Taylor, 10/5 Slide credits: Sergio Bacallado 1 / 30 Simple linear regression Model: y i = β 0 + β 1 x i

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Longitudinal Data Analysis of Health Outcomes

Longitudinal Data Analysis of Health Outcomes Longitudinal Data Analysis of Health Outcomes Longitudinal Data Analysis Workshop Running Example: Days 2 and 3 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

Morphometry. John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.

Morphometry. John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Morphometry John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Morphometry is defined as: Measurement of the form of organisms or of their parts. The American Heritage

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Dynamic Causal Models

Dynamic Causal Models Dynamic Causal Models V1 SPC Will Penny V1 SPC V5 V5 Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Wellcome Department of Imaging Neuroscience, ION, UCL, UK. Mathematics in

More information

Statistics: revision

Statistics: revision NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 29 / 30 April 2004 Department of Experimental Psychology University of Cambridge Handouts: Answers

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11. Correlation and Regression The word correlation is used in everyday life to denote some form of association. We might say that we have noticed a correlation between foggy days and attacks of

More information

Analysis of fmri Timeseries:

Analysis of fmri Timeseries: 1 Chapter 10 Analysis of fmri Timeseries: Linear Time-Invariant Models, Event-related fmri and Optimal Experimental Design Rik Henson The Wellcome Dept. of Imaging Neuroscience & Institute of Cognitive

More information

Categorical Data Analysis. The data are often just counts of how many things each category has.

Categorical Data Analysis. The data are often just counts of how many things each category has. Categorical Data Analysis So far we ve been looking at continuous data arranged into one or two groups, where each group has more than one observation. E.g., a series of measurements on one or two things.

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

Correlation and regression

Correlation and regression NST 1B Experimental Psychology Statistics practical 1 Correlation and regression Rudolf Cardinal & Mike Aitken 11 / 12 November 2003 Department of Experimental Psychology University of Cambridge Handouts:

More information

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining Regularization Fall 2017 Assignment 2 Admin 2 late days to hand in tonight, answers posted tomorrow morning. Extra office hours Thursday at 4pm (ICICS 246). Midterm

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction Bayesian Treatments of 5 Neuroimaging Data Will Penny and Karl Friston 5.1 Introduction In this chapter we discuss the application of Bayesian methods to neuroimaging data. This includes data from positron

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

1 The Classic Bivariate Least Squares Model

1 The Classic Bivariate Least Squares Model Review of Bivariate Linear Regression Contents 1 The Classic Bivariate Least Squares Model 1 1.1 The Setup............................... 1 1.2 An Example Predicting Kids IQ................. 1 2 Evaluating

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Chapter 4. Regression Models. Learning Objectives

Chapter 4. Regression Models. Learning Objectives Chapter 4 Regression Models To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian Peterson Learning Objectives After completing

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Statistical Inference with Regression Analysis

Statistical Inference with Regression Analysis Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Steven Buck Lecture #13 Statistical Inference with Regression Analysis Next we turn to calculating confidence intervals and hypothesis testing

More information

Chapter 13. Multiple Regression and Model Building

Chapter 13. Multiple Regression and Model Building Chapter 13 Multiple Regression and Model Building Multiple Regression Models The General Multiple Regression Model y x x x 0 1 1 2 2... k k y is the dependent variable x, x,..., x 1 2 k the model are the

More information

Inference with Simple Regression

Inference with Simple Regression 1 Introduction Inference with Simple Regression Alan B. Gelder 06E:071, The University of Iowa 1 Moving to infinite means: In this course we have seen one-mean problems, twomean problems, and problems

More information

Functional Causal Mediation Analysis with an Application to Brain Connectivity. Martin Lindquist Department of Biostatistics Johns Hopkins University

Functional Causal Mediation Analysis with an Application to Brain Connectivity. Martin Lindquist Department of Biostatistics Johns Hopkins University Functional Causal Mediation Analysis with an Application to Brain Connectivity Martin Lindquist Department of Biostatistics Johns Hopkins University Introduction Functional data analysis (FDA) and causal

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Bayesian Estimation of Dynamical Systems: An Application to fmri

Bayesian Estimation of Dynamical Systems: An Application to fmri NeuroImage 16, 513 530 (2002) doi:10.1006/nimg.2001.1044, available online at http://www.idealibrary.com on Bayesian Estimation of Dynamical Systems: An Application to fmri K. J. Friston The Wellcome Department

More information

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878 Contingency Tables I. Definition & Examples. A) Contingency tables are tables where we are looking at two (or more - but we won t cover three or more way tables, it s way too complicated) factors, each

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 An Introduction to Multilevel Models PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 Today s Class Concepts in Longitudinal Modeling Between-Person vs. +Within-Person

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Regression Models. Chapter 4. Introduction. Introduction. Introduction

Regression Models. Chapter 4. Introduction. Introduction. Introduction Chapter 4 Regression Models Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 008 Prentice-Hall, Inc. Introduction Regression analysis is a very valuable tool for a manager

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01 An Analysis of College Algebra Exam s December, 000 James D Jones Math - Section 0 An Analysis of College Algebra Exam s Introduction Students often complain about a test being too difficult. Are there

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations

For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations 1 Generalised Inverse For GLM y = Xβ + e (1) where X is a N k design matrix and p(e) = N(0, σ 2 I N ), we can estimate the coefficients from the normal equations (X T X)β = X T y (2) If rank of X, denoted

More information

Reproducibility and Power

Reproducibility and Power Reproducibility and Power Thomas Nichols Department of Sta;s;cs & WMG University of Warwick Reproducible Neuroimaging Educa;onal Course OHBM 2015 slides & posters @ http://warwick.ac.uk/tenichols/ohbm

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information